Lecture 4: The Dirichlet problem

Problem: Given a domain $D \subset \mathbb{R}^{2}, H \in \mathbb{R}$ and φ a continuous function on $\partial \Omega$,: Does a graph exist on Ω, with constant mean curvature H and boundary values φ ?

Theorem (Serrin)
If Ω is convex with $\kappa(\partial \Omega)>2 H>0, Y E S$ for any φ.

Assuming $\varphi=0$:

1. YES for small values of H.
2. If $\partial \Omega$ in convex with $\kappa(\partial \Omega)>H>0$, YES.
3. If Ω is convex and area $(\Omega) H^{2}<\frac{\pi}{2}$, YES.
4. If Ω is an unbounded convex domain

$$
\mathrm{YES} \Leftrightarrow \Omega \subset \text { strip of width } 1 / H \text {. }
$$

For $t \in[0,1]$

$$
\left\{\begin{array}{cl}
Q_{t}[u] & =\left(1+|D u|^{2}\right) \Delta u-u_{i} u_{j} u_{i ; j}-t\left(1+|D u|^{2}\right)^{3 / 2}=0 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{array}\right.
$$

$$
\mathcal{A}=\left\{t \in[0,1]: \exists u_{t}, Q_{t}\left[u_{t}\right]=0, u_{t \mid \partial \Omega}=0\right\}
$$

$1 \in \mathcal{A}$?

- $\mathcal{A} \neq \emptyset: 0 \in \mathcal{A}$.
- \mathcal{A} is open. If $t_{0} \in \mathcal{A}, \exists \epsilon>0:\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \subset \mathcal{A}$. Define $T(t, u)=Q_{t}[u]: t_{0} \in \mathcal{A}$ if and only if $T\left(t_{0}, u_{t_{0}}\right)=0$. Prove $\left(D Q_{t}\right)_{u}$ at the point $u_{t_{0}}$ is an isomorphism, then apply Implicit Function Theorem.
\Leftrightarrow for any $f \in C^{\alpha}(\bar{\Omega}), \exists_{1} v L v=\left(D Q_{t}\right)_{u}(v)=f$ in Ω and $v=0$ on $\partial \Omega$.

$$
L v=\left(D Q_{t}\right)_{u} v=a_{i j}(D u) v_{i ; j}+\mathcal{B}_{i}\left(D u, D^{2} u\right) v_{i}
$$

If is a linear elliptic operator where the standard theory applies.

- \mathcal{A} is closed in $[0,1]:\left\{t_{k}\right\} \subset \mathcal{A}, t_{k} \rightarrow t \in[0,1], t \in \mathcal{A}$? For each $k, \exists u_{k}: Q_{t_{k}}\left[u_{k}\right]=0$ in Ω and $u_{k}=0$ in $\partial \Omega$.

$$
\mathcal{S}=\left\{u: \exists t \in[0,1], Q_{t}[u]=0, u_{\mid \partial \Omega}=0\right\}
$$

Then $\left\{u_{k}\right\} \subset \mathcal{S}$. If \mathcal{S} is bounded in 'some' Banach space $-C^{1, \beta}\left(\bar{\Omega}-\rightsquigarrow\right.$ Schauder theory $\rightsquigarrow \mathcal{S}$ is bounded in $C^{2, \beta}(\bar{\Omega}) \rightsquigarrow$ \mathcal{S} is precompact in $C^{2}(\bar{\Omega})$.
$\exists\left\{u_{k_{l}}\right\} \subset\left\{u_{k}\right\} \rightarrow u \in C^{2}(\bar{\Omega})$ in $C^{2}(\bar{\Omega})$. Since $T:[0,1] \times C^{2}(\bar{\Omega}) \rightarrow C^{0}(\bar{\Omega})$ is continuous, $\rightsquigarrow Q_{t}[u]=T(t, u)=\lim _{l \rightarrow \infty} T\left(t_{k_{l}}, u_{k_{l}}\right)=0$ in Ω. And

$$
u_{\mid \partial \Omega}=\lim _{l \rightarrow \infty} u_{k_{l} \mid \partial \Omega}=0
$$

$\rightsquigarrow u \in C^{2, \alpha}(\bar{\Omega}) \rightsquigarrow t \in \mathcal{A}$.
\mathcal{A} is closed if $\exists M$ independent on $t \in \mathcal{A}$:

$$
\begin{gathered}
\left\|u_{t}\right\|_{C^{1}(\bar{\Omega})}=\sup _{\Omega}\left|u_{t}\right|+\sup _{\Omega}\left|D u_{t}\right| \leq M . \\
\text { If } t_{1}<t_{2}, t_{i} \in[0,1], i=1,2 \text {. Then } Q_{t_{1}}\left[u_{t_{1}}\right]=0 \text { and } \\
Q_{t_{1}}\left[u_{t_{2}}\right]=\left(t_{2}-t_{1}\right)\left(1+\left|D u_{t_{2}}\right|^{3 / 2}\right)>0=Q_{t_{1}}\left[u_{t_{1}}\right]=0 . \\
u_{t_{1}}=u_{t_{2}} \text { on } \partial \Omega \Rightarrow u_{t_{2}}<u_{t_{1}} \text { in } \Omega .
\end{gathered}
$$

C^{0} estimates \rightsquigarrow height estimates
Boundary gradient estimates \Rightarrow Interior gradient estimates If $u=0$ on $\partial \Omega$, then boundary gradient estimates \Leftrightarrow estimates of the slope of the graph

$$
\begin{gathered}
1=\langle N, a\rangle^{2}+\langle\nu, a\rangle^{2}=\frac{1}{1+|D u|^{2}}+\langle\nu, a\rangle^{2} \Rightarrow\langle\nu, a\rangle=\frac{|D u|}{\sqrt{1+|D u|^{2}}} . \\
\langle\nu, a\rangle \leq C<1 \Rightarrow|D u|<\frac{C}{\sqrt{1-C^{2}}} .
\end{gathered}
$$

Theorem

If Ω is a convex domain with $\kappa>H>0$, then there is a solution of the Dirichlet problem.

Problem: find M such that $|u|<M,\langle\nu, a\rangle<C<1$ along $\partial \Omega$.
Key point: the circle of radius $R=1 / H$ satisfies a rolling condition.

Theorem

If Ω is convex and $L<\sqrt{3} \pi / H^{2}$, there is a solution with $u=0$.

$$
h \leq \frac{A H}{2 \pi}<\frac{1}{2 H}
$$

